Homework

1. Determine whether the vector is in the span of the vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_m}$

$$(1)\overrightarrow{v_{1}} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \overrightarrow{v_{2}} = \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \vec{x} = \begin{pmatrix} 2\\3\\4 \end{pmatrix} (2) \overrightarrow{v_{1}} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \overrightarrow{v_{2}} = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, \overrightarrow{v_{3}} = \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \vec{x} = \begin{pmatrix} 5\\4\\3\\2 \end{pmatrix}$$

- 2. Let $\overrightarrow{a_1} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\overrightarrow{a_2} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$, $\overrightarrow{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. For what values of h is \overrightarrow{b} in the plane spanned by $\overrightarrow{a_1}$, $\overrightarrow{a_2}$.
- 3. For which values of the constants b and c is the vector $\begin{pmatrix} 3 \\ b \end{pmatrix}$ a linear combination of $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$,

and
$$\begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix}$$
?

4. (1) Let
$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, $\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Does $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ span \mathbb{R}^4 ? Why or why not? (2) Let $\overrightarrow{v_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -2 \end{pmatrix}$, $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ -3 \\ 8 \end{pmatrix}$, $\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$. Does $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ span \mathbb{R}^3 ? Why or why not? (-5)

(2) Let
$$\overrightarrow{v_1} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$$
, $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ -3 \\ 8 \end{pmatrix}$, $\overrightarrow{v_3} = \begin{pmatrix} 4 \\ -1 \\ -5 \end{pmatrix}$. Does $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ span \mathbb{R}^3 ? Why or why not?