Homework

1. (a) For matrix
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$
, find vectors that span the column space of A

(b) For each matrix A, find vectors that span the null space of A

$$(1) A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} (2) A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. Describe the solutions of the following system in parametric vector form.

$$\begin{cases} x_1 + 3x_2 - 5x_3 = 4 \\ x_1 + 4x_2 - 8x_3 = 7 \\ -3x_1 - 7x_2 + 9x_3 = -6 \end{cases}$$

Homework

- 3. Which of the following subsets of \mathbb{R}^3 are actually subspaces?

(a) The plane of vectors
$$(b_1, b_2, b_3)$$
 with $b_1 = b_2$.
(b) The plane of vectors with $b_1 = 1$.

(c) $W = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} : x + y + z = 1 \right\}$

- (c) The vectors with $b_1b_2b_3=0$.
- (d) All linear combinations of v = (1, 4, 0) and w = (2, 2, 2).

(e) All vectors that satisfy
$$b_1 + b_2 + b_3 = 0$$
.
(f) All vectors with $b_1 \le b_2 \le b_3$.
(e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
(f) All vectors with $b_1 \le b_2 \le b_3$.
(f) All vectors with $b_1 \le b_2 \le b_3$.

- 4. True or false (with a counterexample if false):
 - The vectors **b** that are not in the column space C(A) form a subspace.
 - (b) If C(A) contains only the zero vector, then A is the zero matrix.
 - (c) The column space of 2A equals the column space of A.
 - (d) The column space of A I equals the column space of A (test this).

Homework(Optional)

- 1 How is the nullspace N(C) related to the spaces N(A) and N(B), if $C = \begin{bmatrix} A \\ B \end{bmatrix}$
- 2. (a) Suppose U_1 , U_2 are subspaces of \mathbb{R}^n . Prove or disprove:
 - (1) The sum $U_1 + U_2 = \{\overrightarrow{u_1} + \overrightarrow{u_2} | \overrightarrow{u_1} \in U_1, \overrightarrow{u_2} \in U_2\}$ is a subspace of \mathbb{R}^n .
 - (2) The intersection $U_1 \cap U_2$ is a subspace of \mathbb{R}^n .
 - (3) The intersection $U_1 \cup U_2$ is a subspace of \mathbb{R}^n
 - (b) Suppose U_1, U_2, U_3 are subspaces of \mathbb{R}^n . Prove or disprove:
 - $(1) U_1 \cap (U_2 + U_3) = U_1 \cap U_2 + U_1 \cap U_3$
 - (2) If $U_2 \subseteq U_1$, then $U_1 \cap (U_2 + U_3) = U_2 + U_1 \cap U_3$
 - (3) If $U_1 + U_3 = U_2 + U_3$, then $U_1 = U_2$
- 3. Consider a subspace V of \mathbb{R}^n . We define the orthogonal complement V^{\perp} of V as the set of those \overrightarrow{w} in \mathbb{R}^n that are perpendicular to all vectors in V; in particular,
- $V^{\perp} = \{ \vec{w} \in \mathbb{R}^n | \vec{w} \cdot \vec{v} = 0 \text{ for all } \vec{v} \in V \}$. Prove or disprove: V^{\perp} is a subspace of \mathbb{R}^n

Homework (Optional)

- 4. (a) Suppose column j of B is a combination of previous columns of B. Show that column j of AB is the same combination of previous columns of AB. Then AB cannot have new pivot columns, so $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
 - (b) Find A_1 and A_2 so that $rank(A_1B) = 1$ and $rank(A_2B) = 0$ for $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- 5. Problem 4 proved that $rank(AB) \leq rank(B)$. Then the same reasoning gives $rank(B^{T}A^{T}) \leq rank(A^{T})$. How do you deduce that $rank(AB) \leq rank(A)$?
- 6 Suppose Ax = b and Cx = b have the same (complete) solutions for every b. Is it true that A equals C?