Homework

1. Let $V = Span\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$. Find the coordinates of \overrightarrow{x} with respect to the basis $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ of V and write the coordinate vector $[\overrightarrow{x}]_{\mathcal{B}}$.

$$(a)\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}$$

$$(b)\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 1 \end{bmatrix}$$

2 Consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors 3 Find a basis \mathfrak{B} of \mathbb{R}^2 such that

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. We are told that $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$ for a certain vector \vec{x} in \mathbb{R}^2 . Find \vec{x} .

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

4 Consider the plane $2x_1 - 3x_2 + 4x_3 = 0$ with basis 5 Consider the plane $2x_1 - 3x_2 + 4x_3 = 0$. Find a basis

$$\mathfrak{B}$$
 consisting of vectors $\begin{bmatrix} 8 \\ 4 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$. If $[\vec{x}]_{\mathfrak{B}} = \mathfrak{B}$ of this plane such that $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ for $\vec{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$.

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, find \vec{x} .

Homework

- 6 Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for a vector space V, and suppose $\mathbf{a}_1 = 4\mathbf{b}_1 \mathbf{b}_2$, $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$, and $\mathbf{a}_3 = \mathbf{b}_2 2\mathbf{b}_3$.
 - a. Find the change-of-coordinates matrix from A to B.
 - b. Find $[\mathbf{x}]_{B}$ for $\mathbf{x} = 3\mathbf{a}_{1} + 4\mathbf{a}_{2} + \mathbf{a}_{3}$.
- 7. Let $\overrightarrow{b_1} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$, $\overrightarrow{b_2} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$, $\overrightarrow{c_1} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\overrightarrow{c_2} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$, and consider two bases $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\}$ and $C = \{\overrightarrow{c_1}, \overrightarrow{c_2}\}$ of R^2 . Find the change-of-coordinates matrix from \mathcal{B} to C and the change-of-coordinates matrix from C to C.
- 8. Find the bases and dimensions for the four subspaces associated with A and B. (Hint: You can use the factorization to skip some elimination steps)