

# Homework

1. Let  $T$  is a linear transformation with standard matrix  $A = \begin{pmatrix} -5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4 \end{pmatrix}$ .

Is  $T$  one-to-one? Does  $T$  map  $\mathbb{R}^4$  onto  $\mathbb{R}^4$ ?

2. Let  $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$  be a linear transformation.

If  $T$  one-to-one, what can you say about  $m$  and  $n$ ?

If  $T$  map  $\mathbb{R}^n$  onto  $\mathbb{R}^m$ , what can you say about  $m$  and  $n$ ?

3. Let  $V$  be the subspace of  $\mathbb{R}^4$  defined by the equation

$$x_1 - x_2 + 2x_3 + 4x_4 = 0.$$

Find a linear transformation  $T$  from  $\mathbb{R}^3$  to  $\mathbb{R}^4$  such that  $\ker(T) = \{\vec{0}\}$  and  $\text{im}(T) = V$ . Describe  $T$  by its matrix  $A$ .

4.(a) Give an example of a linear transformation whose image is the line spanned by  $\begin{pmatrix} 7 \\ 6 \\ 5 \end{pmatrix}$  in  $\mathbb{R}^3$ .

(b) Give an example of a linear transformation whose kernel is the line spanned by  $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$  in  $\mathbb{R}^3$ .

# Homework

## Image of a linear transformation

The image of a linear transformation  $T(\vec{x}) = A\vec{x}$  is the span of the column vectors of  $A$ .<sup>2</sup> We denote the image of  $T$  by  $\text{im}(T)$  or  $\text{im}(A)$ .

## Kernel

The *kernel*<sup>3</sup> of a linear transformation  $T(\vec{x}) = A\vec{x}$  from  $\mathbb{R}^m$  to  $\mathbb{R}^n$  consists of all zeros of the transformation, that is, the solutions of the equation  $T(\vec{x}) = A\vec{x} = \vec{0}$ . See Figure 10, where we show the kernel along with the image.

In other words, the kernel of  $T$  is the solution set of the linear system

$$A\vec{x} = \vec{0}.$$

We denote the kernel of  $T$  by  $\text{ker}(T)$  or  $\text{ker}(A)$ .

5. Can you find a  $3 \times 3$  matrix  $A$  such that  $\text{im}(A) = \mathbb{R}^7$  and  $\text{ker}(A) = \{0\}$ ? Explain.
6. Give an example of a  $4 \times 5$  matrix  $A$  with  $\text{dim}(\text{ker } A) = 3$ .

- a. Consider a linear transformation  $T$  from  $\mathbb{R}^5$  to  $\mathbb{R}^3$ . What are the possible values of  $\text{dim}(\text{ker } T)$ ? Explain.
- b. Consider a linear transformation  $T$  from  $\mathbb{R}^4$  to  $\mathbb{R}^7$ . What are the possible values of  $\text{dim}(\text{im } T)$ ? Explain.