

Homework

1. Let $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. (a) Find the real eigenvalues (b) Find the complex eigenvalues
2. Check if $\vec{u} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{pmatrix}$
3. Find the eigenvalues of A and find a basis for the corresponding eigenspaces.

Diagonalize the matrix if it's diagonalizable.

$$(1) A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} (2) A = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix} (3) A = \begin{pmatrix} 4 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

4. Determine if the following matrices are diagonalizable.
 - (1) A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional
 - (2) A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional
 - (3) A is a 7×7 matrix with three eigenvalues. One eigenspace is two-dimensional and one of the other eigenspaces is three-dimensional

Homework

5. Compute A^k (k is a positive integer). Let $A = \begin{pmatrix} a & 0 \\ 3(a-b) & b \end{pmatrix}$.

6. True or False

- (1) Suppose A is invertible. Then λ is an eigenvalue of $A \Leftrightarrow \lambda^{-1}$ is an eigenvalue of A^{-1}
- (2) λ is an eigenvalue of $A \Leftrightarrow \lambda$ is an eigenvalue of A^T
- (3) Suppose k is a positive integer. If A is similar to B , then A^k is similar to B^k .
- (4) If A, B are $n \times n$ matrices and A is invertible, then AB is similar to BA .
- (5) If A is invertible, A is diagonalizable.
- (6) If \vec{v} is an eigenvector of both A and B , then \vec{v} is necessarily an eigenvector of AB .