-
(1) −2−6511−114−3 .
(2) 3−100−5200005−200−21 .
(3) 1−11−1101−23−4001−360001−400001 .
-
R−{1,2} .
-
±12 .
-
−210−101−44 .
-
(1) (2−2n2−2n+12n−12n+1−1) .
(2) 02×2 .
-
a. 2 or 6 . Choose λ=2 .
b. (1313) , (1,−1) .
c. Ax=(2,−2)=λx .
-
(1) False.
(2) True.
(3) True.
(4) True.
-
B:Rn×n , Bi,j={(Ai,jT)−10Ai,jT=0otherwise .
-
a. 18.
b. 2n2(n+1) .
c. 52s.
-
(1) n−11Jn×n−1n , where J is matrix of ones.
(2) A−1:Rn×n , Ai,j−1=⎩⎨⎧1−a0i=jj=i+1otherwise .
-
Xi,j={10i≤jotherwise .
-
Proof
Let C=(1n−AB)−1 .
(1m−BA)(1m+BCA)=1m+BCA−BA−BABCA=1m−BA+B(CA−ABCA)=1m−BA+B(C−ABC)A=1m−BA+B(1n−AB)CA=1m−BA+BA=1m
□ .
-
a. E1=1−2−2010001 , E2=100011001 .
b. M1=122010001 , M2=10001−1001 , U=10022031−1 .
c. L=12201−1001 , U=10022031−1 .
d. L=12201−1001 , D=10002000−1 , U=1002103211 .
-
(a) 1n .
(b) n1Jn×n , where J is matrix of ones.
-
Proof
(AB)i,j=Ai,∗⋅B∗,j=k=1∑nAi,kBk,j≤sk=1∑nBk,j≤sr
□ .
-
a. Proof
If all entries of Am are less than or equal to rm , according to 6., since Am+1=AmA , then we have s=rm and r=r , and Ai,jm+1≤rm⋅r=rm+1 ∀i,j:N∗≤n .
The result holds for n=1 .
By induction Ai,jm≤rm ∀i,j:N∗≤n ∀m:N∗ □ .
b. Proof
By a
0≤m→+∞limAi,jm≤m→+∞limrm=0 ∀i,j:N∗≤n ∀m:N∗
Therefore limm→+∞Ai,jm=0n×n □ .
c. Proof
(i:N∑Ai)i,j=k:N∑Ai,jk≤k:N∑rk=1−r1 ∀i,j:N∗≤n
Converges since the series is positive □ .
d.
(1n−A)i=0∑mAi=i=0∑mAi−i=1∑m+1Ai=1n−Am+1
Proof Therefore, by b
m→+∞lim(1n−A)i=0∑mAi=1n−0n×n=1n
And (1n−A)−1=∑i=0mAi by definition □ .