作业 0924

返回 目录

此页面提供 作业 0924 有关资料。

此作业的试题 PDF 提供于以下 链接

答案见下。

9/24 作业

Homework 5

  1. (1) (211614513)\begin{pmatrix}\mathop{-}2 & 1 & 1\\ \mathop{-}6 & 1 & 4\\ 5 & \mathop{-}1 & \mathop{-}3\end{pmatrix} .

    (2) (3500120000520021)\begin{pmatrix}3 & \mathop{-}5 & 0 & 0\\ \mathop{-}1 & 2 & 0 & 0\\ 0 & 0 & 5 & \mathop{-}2\\ 0 & 0 & \mathop{-}2 & 1\end{pmatrix} .

    (3) (1000011000121001331014641)\begin{pmatrix}1 & 0 & 0 & 0 & 0\\ \mathop{-}1 & 1 & 0 & 0 & 0\\ 1 & \mathop{-}2 & 1 & 0 & 0\\ \mathop{-}1 & 3 & \mathop{-}3 & 1 & 0\\ 1 & \mathop{-}4 & 6 & \mathop{-}4 & 1\end{pmatrix} .

  2. R{1,2}\R - \left\{ 1, 2 \right\} .

  3. ±12\pm \mathbf 1_2 .

  4. (21104104)\begin{pmatrix}\mathop{-}2 & 1\\ 10 & \mathop{-}4\\ \mathop{-}10 & 4\end{pmatrix} .

  5. (1) (22n2n122n+12n+11)\begin{pmatrix} 2-2^n & 2^n-1 \\ 2-2^{n+1} & 2^{n+1}-1 \end{pmatrix} .

    (2) 02×2\mathbf 0_{2 \times 2} .

  6. a. 22 or 66 . Choose λ=2\lambda = 2 .

    b. (1133)\begin{pmatrix}1 & 1\\ 3 & 3\end{pmatrix} , (1,1)(1, -1) .

    c. Ax=(2,2)=λxA \vec x = (2, -2) = \lambda \vec x .

  7. (1) False.

    (2) True.

    (3) True.

    (4) True.

  8. B:Rn×nB: \R^{n \times n} , Bi,j={(Ai,jT)1Ai,jT00otherwiseB_{i, j} = \begin{cases} (A^\mathrm T_{i, j})^{-1} & A^\mathrm T_{i, j} \ne 0 \\ 0 & \text{otherwise} \end{cases} .

  9. a. 18.

    b. n2(n+1)2\frac{n^2(n+1)}{2} .

    c. 52s.

Optional

  1. (1) 1n1Jn×n1n\frac{1}{n - 1} J_{n \times n} - \mathbf 1_n , where JJ is matrix of ones.

    (2) A1:Rn×nA^{-1}: \R^{n \times n} , Ai,j1={1i=jaj=i+10otherwiseA^{-1}_{i, j} = \begin{cases} 1 & i = j \\ -a & j = i + 1 \\ 0 & \text{otherwise} \end{cases} .

  2. Xi,j={1ij0otherwiseX_{i, j} = \begin{cases} 1 & i \le j \\ 0 & \text{otherwise} \end{cases} .

  3. Proof

    Let C=(1nAB)1C = (\mathbf 1_n - AB)^{-1} .

    (1mBA)(1m+BCA)=1m+BCABABABCA=1mBA+B(CAABCA)=1mBA+B(CABC)A=1mBA+B(1nAB)CA=1mBA+BA=1m\begin{align*} (\mathbf 1_m - BA) (\mathbf 1_m + BCA ) \\ &= \mathbf 1_m + BCA - BA - BABCA \\ &= \mathbf 1_m - BA + B (CA - ABCA) \\ &= \mathbf 1_m - BA + B (C - ABC) A \\ &= \mathbf 1_m - BA + B (\mathbf 1_n - AB) C A \\ &= \mathbf 1_m - BA + BA \\ &= \mathbf 1_m \end{align*}

    \square .

  4. a. E1=(100210201)E_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} , E2=(100010011)E_2 = \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 1 & 1\end{pmatrix} .

    b. M1=(100210201)M_1 = \begin{pmatrix}1 & 0 & 0\\ 2 & 1 & 0\\ 2 & 0 & 1\end{pmatrix} , M2=(100010011)M_2 = \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & \mathop{-}1 & 1\end{pmatrix} , U=(123021001)U = \begin{pmatrix}1 & 2 & 3\\ 0 & 2 & 1\\ 0 & 0 & \mathop{-}1\end{pmatrix} .

    c. L=(100210211)L = \begin{pmatrix}1 & 0 & 0\\ 2 & 1 & 0\\ 2 & \mathop{-}1 & 1\end{pmatrix} , U=(123021001)U = \begin{pmatrix}1 & 2 & 3\\ 0 & 2 & 1\\ 0 & 0 & \mathop{-}1\end{pmatrix} .

    d. L=(100210211)L = \begin{pmatrix}1 & 0 & 0\\ 2 & 1 & 0\\ 2 & \mathop{-}1 & 1\end{pmatrix} , D=(100020001)D = \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & \mathop{-}1\end{pmatrix} , U=(1230112001)U = \begin{pmatrix}1 & 2 & 3\\ 0 & 1 & \frac{1}{2}\\ 0 & 0 & 1\end{pmatrix} .

  5. (a) 1n\mathbf 1_n .

    (b) 1nJn×n\frac{1}{n} J_{n \times n} , where JJ is matrix of ones.

  6. Proof

    (AB)i,j=Ai,B,j=k=1nAi,kBk,jsk=1nBk,jsr\begin{align*} (AB)_{i, j} \\ & = A_{i, *} \cdot B_{*, j} \\ & = \sum_{k = 1}^{n} A_{i, k} B_{k, j} \\ & \le s \sum_{k = 1}^{n} B_{k, j} \\ & \le sr \end{align*}

    \square .

  7. a. Proof

    If all entries of AmA^m are less than or equal to rmr^m , according to 6., since Am+1=AmAA^{m + 1} = A^m A , then we have s=rms = r^m and r=rr = r , and Ai,jm+1rmr=rm+1 i,j:NnA^{m + 1}_{i, j} \le r^m \cdot r = r^{m + 1} \space \forall i, j: \N^* \le n .

    The result holds for n=1n = 1 .

    By induction Ai,jmrm i,j:Nn m:NA^m_{i, j} \le r^m \space \forall i, j: \N^* \le n \space \forall m: \N^* \square .

    b. Proof

    By a

    0limm+Ai,jmlimm+rm=0 i,j:Nn m:N0 \le \lim_{m \to +\infty} A^m_{i, j} \le \lim_{m \to +\infty} r^m = 0 \space \forall i, j: \N^* \le n \space \forall m: \N^*

    Therefore limm+Ai,jm=0n×n\lim_{m \to +\infty} A^m_{i, j} = \mathbf 0_{n \times n} \square .

    c. Proof

    (i:NAi)i,j=k:NAi,jkk:Nrk=11r i,j:Nn\begin{align*} \left( \sum_{i: \N} A^i \right)_{i, j} \\ & = \sum_{k: \N} A^k_{i, j} \\ & \le \sum_{k: \N} r^k \\ & = \frac{1}{1-r} \space \forall i, j: \N^* \le n \end{align*}

    Converges since the series is positive \square .

    d.

    (1nA)i=0mAi=i=0mAii=1m+1Ai=1nAm+1\begin{align*} (\mathbf 1_n - A) \sum_{i = 0}^{m} A^i \\ & = \sum_{i = 0}^{m} A^i - \sum_{i = 1}^{m + 1} A^i \\ & = \mathbf 1_n - A^{m + 1} \end{align*}

    Proof Therefore, by b

    limm+(1nA)i=0mAi=1n0n×n=1n\lim_{m \to +\infty} (\mathbf 1_n - A) \sum_{i = 0}^{m} A^i = \mathbf 1_n - \mathbf 0_{n \times n} = \mathbf 1_n

    And (1nA)1=i=0mAi(\mathbf 1_n - A)^{-1} = \sum_{i = 0}^{m} A^i by definition \square .

Above Rendered from Markdown