-
(1) 2643−7−1−344−7+(−8)−3643=151 .
(2)
(a) (−3)4507105150=225 .
(b) −13860500105−5−236400705=225 .
-
(1) 412 .
(2) 24 .
-
(1) x∈{1,2} .
(2) x∈{2,3} .
-
Proof By expanding □ .
-
a. Proof
Expand the determinant
f(t)=(b−a)t2+(a2−b2)t+ab2−a2b
Therefore f(t) is quadratic function of t □ .
The coefficient is (b−a) .
b. Apply f , f(a)=f(b)=0 .
By factor theorem, f(t)=k(t−a)(t−b) .
k=b−a .
c. R−{a,b} .