作业 0929

返回 目录

此页面提供 作业 0929 有关资料。

此作业的试题 PDF 提供于以下 链接

答案见下。

9/29 作业

Homework 6

  1. (1) 2634713447+(8)3463=1512 \left| \begin{matrix} 6 & 3 \\ 4 & -7 \end{matrix} \right| - 1 \left| \begin{matrix} -3 & 4 \\ 4 & -7 \end{matrix} \right| + (-8) \left| \begin{matrix} -3 & 4 \\ 6 & 3 \end{matrix} \right| = 151 .

    (2)

    (a) (3)4715105050=225(-3) \left| \begin{matrix} 4 & 7 & 1 \\ 5 & 10 & 5 \\ 0 & 5 & 0 \end{matrix} \right| = 225 .

    (b) 130085106055247300605=225- 1 \left| \begin{matrix} 3 & 0 & 0 \\ 8 & 5 & 10 \\ 6 & 0 & 5 \end{matrix} \right| - 5 \left| \begin{matrix} -2 & 4 & 7 \\ 3 & 0 & 0 \\ 6 & 0 & 5 \end{matrix} \right| = 225 .

  2. (1) 412412 .

    (2) 2424 .

  3. (1) x{1,2}x \in \left\{ 1, 2 \right\} .

    (2) x{2,3}x \in \left\{ 2, 3 \right\} .

  4. Proof By expanding \square .

  5. a. Proof

    Expand the determinant

    f(t)=(ba)t2+(a2b2)t+ab2a2bf(t) = (b - a) t^2 + (a^2 - b^2) t + ab^2 - a^2b

    Therefore f(t)f(t) is quadratic function of tt \square .

    The coefficient is (ba)(b-a) .

    b. Apply ff , f(a)=f(b)=0f(a) = f(b) = 0 .

    By factor theorem, f(t)=k(ta)(tb)f(t) = k (t-a) (t-b) .

    k=bak = b - a .

    c. R{a,b}\R - \left\{ a, b \right\} .

Above Rendered from Markdown